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Let the set of polynomials of degree at most n and having nonnegative real
coefficients be denoted by II; . If IIIII means sUPlo.lll/(x)l, let us write

Hn[/] = inf III - pjqll·
p.qEII~

It has been shown recently that the exact order of H n [(1 - x) 1/2] is n - 1/2.

This is a consequence of the result

11(1 - X)l/2 - (p(x)jq(x))11 ~ ~n -1/2 (p,qEII;,n~12) (1)

due to Reddy [1] and the result

1I(I-x)l/2 - T;I(x)1I ~ (/7rj2) n- 1/2 (n ~ 1) (2)

due to Bundschuh [2]. Here Tn(x) denotes the nth Taylor polynomial of
(1 - x) -1/2 which clearly belongs to II;.

In the present note we generalize result (2) to the case of the function
(1 - x)<t (0 <a ~ 1). The method used is quite different from that used by
Bundschuh and treats all a in the range 0 < a ~ 1 simultaneously. Our result
is the Theorem stated below.

The proof of Reddy's result (1) can be extended with little change to cover
each value of a, 0 < a ~ 1, whence it is found that

11(1 - x)<t - (p(x)jq(x))11 ~ ~n-<t (p,qEII;,n~ 12).

This, combined with our Theorem, gives the exact order of Hnl (1 - x)" j as
n-<t (0 <a ~ 1).

Our main result is
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THEOREM. If Tn(a, X) is the nth Taylor polynomial of (1 - X)-a
(0 < a ~ 1) (which belongs to II:), then

(n ~ 1),

where K is a constant independent of both nand a.

Proof The function (1 - x) - a is the unique solution of the differential
equation

(I-x)y'-ay=O

Written in series form the solution is

with y(O) = 1.

and so

(1- )-a=f F(k+a) k

x "-' k' () X
k=O • F a

_ ,".., F(k +a) k
Tn(a, x) -..:;... k' F( ) x .

k=O • a

(Ixl < 1)

It is then easy to see that Tn(a, x) is the unique solution of the differential
equation

F(n +a + 1)
(I-x)y'-ay=- x n

F(a) n!

Solving this by a standard technique we find that

with y(O) = 1.

T (a x)= (1-x)-a - F(n + a + 1) (1-x)-a J'x tn(1_t)a-1 dt.
n , n! F(a) 0

Dividing by (1 - x)-'" Tn(a, x), we get

F(n + a + 1) __I_fx tn(1- W- 1 dt.
n! F(a) Tn(a, x) 0

(3)

We now examine the last term. We have

x 1

o~J t n(1_t)"'-1 dt=xn+1Jtn(1-xt)"'-1 dt
o 0

n+ I F(n + 1) F(a)
=X .

F(n + a + 1)



APPROXIMATION TO (1 - X)"

Also

( )
_ ~ T(k+a) 1 k T(n+a) ~ k

Tn a, x - L.... ,x ~ , ....... X
k=O T(a) k. T(a) n. k=O

because the coefficients are positive and decrease with k. We note that

x n+I x n+I T(a) n! 1 T(a) n!
---::;;: k ::;;:-- .
Tn(a, x) L:Z=o x T(n + a) n + 1 r(n +a)
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The last step here depends on the observation that xn+l(L:Z=oxk)~1 is an
increasing function in 0::;;: x::;;: 1. Applying these results to (3), we now see
that

o::;;: 1 _ (1 _ x " ::;;: n + a T(a) T(n + 1) .
Tn(a,x) ) n+ 1 T(n+a+ 1)

Since n"(T(n)jT(n +a)) --t 1 as n --t 00, uniformly with respect to a in
o<a ::;;: 1, the proof of the theorem is complete.
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